Pages

Bookmark and Share
Showing posts with label binomial theorem. Show all posts
Showing posts with label binomial theorem. Show all posts

Friday, October 30, 2009

Divide Colored Balls

There are $2n$ balls of each color: red, green, and blue. How many ways are there to divide them into two groups such that each group has $3n$ balls?

First Solution



It is the same as the coefficient of $3n$ in the expansion $(1+x+x^2+x^3+\cdots+x^{2n})^3$. The proof is left to the readers as an exercise.


Note that $(1+x+\cdots+x^{2n})^3 = \frac{(1-x^{2n+1})^3}{(1-x)^3} = (1 - 3x^{2n+1} + 3x^{4n+2} - x^{6n+3})(1-x)^{-3}$

But $(1-x)^{-3} = (1+3x + 6x^2 + 10x^3 + \cdots + \frac{(k+2)(k+1)}{2}x^k + cdots)$

So the coefficient of $3n$ in that expansion is:

$\frac{(3n+2)(3n+1)}{2} - 3\frac{n(n+1)}{2} = 3n^2 + 3n + 1$

Second Solution



We shall prove that there are $3n^2+3n+1 = (n+1)^3 - n^3$ ways, which has striking geometrical interpretations.

Create an equilateral triangle with altitude $3n$, and mark all the points that has integer distance to all the sides. These points will form a triangular lattice

It is a well-known fact that for any point in an equilateral triangle, the sum of distances to the sides is constant. Since the altitude of the triangle is $3n$, then for any point in that triangular lattice, the sum of distance to the sides is $3n$. Furthermore, the distances are integers. Thus, these points represent the number of ways to choose $3n$ balls from 3 colors.

However, the constraint that we only have $2n$ supply of each color is not yet enforced. We examine the points in the lattice whose distance to any of the sides is greater than $2n$, and we eliminate them. So we are left with a hexagonal lattice of side $n+1$. This is the projection of a half-shell of an $n+1$-cube that has $n$-cube carved out of it.