Pages

Bookmark and Share
Showing posts with label fundamental theorem of algebra. Show all posts
Showing posts with label fundamental theorem of algebra. Show all posts

Wednesday, December 13, 2017

Product of cosines

For $n$ natural number, and $a = \frac{2\pi}{2n+1}$ find the value of $$\cos a . \cos 2a . \cos 3a . \dots . \cos na$$

Solution

We first prove the following claim: for any $n$ positive odd number, $$\sin (nx) = \sin x P_n (\cos x)$$ $$\cos (nx) = \cos x Q_n (\cos x)$$ where $P_n(t)$ and $Q_n(t)$ are polynomials in the form of $2^{n-1} t^{n-1} + ...$ (In other words, they have degree $n-1$ and the leading coefficient $2^{n-1}$

Proof by induction, evident for $n=1$ and $n=3$. Inductive step: $$\sin (n+2)x = \sin nx \cos 2x + \cos nx \sin 2x = \sin x P_n (\cos x) (2 \cos^2 x - 1) + \cos x Q_n (\cos x) .2\sin x \cos x$$ $$ = \sin x ( P_n (\cos x) (2 \cos^2 x - 1) + 2\cos^2 x Q_n (\cos x) ) = \sin x P_{n+2} (\cos x)$$ where $P_{n+2}$ has degree $n+2$ and the leading coefficient $2. 2^{n-1} + 2.2^{n-1} = 2^{n+1}$

Likewise: $$\cos (n+2) x = \cos nx \cos 2x - \sin nx \sin 2x = \cos x Q_n(\cos x)(2 \cos^2 x - 1) - \sin x P_n (\cos x) . 2 \sin x \cos x$$ $$ = \cos x ( Q_n(\cos x)(2 \cos^2 x - 1) - 2 P_n (\cos x) (1 - \cos^2 x)) = \cos x Q_{n+2} (\cos x)$$ like before, the polynomial $Q_{n+2}$ has degree $n+2$ and leading coefficient $2^{n+1}$

So now, observe that $x = 0,a,2a, \dots, 2na$ are all solutions of the equation $$\cos (2n+1)x = 1 = \cos x Q_{2n+1}(\cos x)$$ Therefore $t = \cos 0, \cos a, \dots, \cos 2na$ are all roots of the polynomial $$ S(t) = tQ_{2n+1}(t) - 1$$ Because $S(t)$ has degree $2n+1$, then $\cos 0, \dots \cos 2na$ are ALL of the roots, and the product of all those roots is $\frac{1}{2^{2n}}$ (because $S(t)$ has leading coefficient $2^{2n}$

Now, $\cos a = \cos 2n a, \cos 2a = \cos (n-1) a$ and so on. So: $$\cos 0 . \cos a .\dots. \cos 2na = 1 . (\cos a. \dots . \cos na)^2 = \frac{1}{2^{2n}}$$ So: $$\cos a . \dots . \cos na = \frac{1}{2^n}$$

Tuesday, September 22, 2009

Non-negative polynomials as sums of squares

Prove that any non-negative real polynomials can be expressed as a sum of squares.

More formally, if $P(x)$ is a polynomial with real coefficients such that $P(x) \geq 0 \forall x \in \mathbb{R}$, show that there exist $Q_1,Q_2,\cdots, Q_k$ polynomials with real coefficients such that $P(x) \equiv Q_1^2(x) + Q_2^2(x) + \cdots + Q_k^2(x)$.