Pages

Bookmark and Share
Showing posts with label infinite sum. Show all posts
Showing posts with label infinite sum. Show all posts

Monday, December 19, 2011

Having fun with infinite series

1. Warm-up problem: show that
$$1 + \frac{1}{2} + \frac{1}{3} + \cdots = \infty$$

2. Suppose $a_1, a_2, \cdots$ is a sequence of positive numbers such that
$$a_1 + a_2 + \cdots + a_n \leq n^2$$
for all $n$, show that
$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots = \infty$$

3. Suppose $a_1, a_2, \cdots$ is a sequence of positive numbers such that
$$a_1 + a_2 + \cdots + a_n \leq n^2 \log n$$
for all $n$, show that
$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots = \infty$$

Solution

Problem 1

This is a standard textbook proof of the divergence of harmonic series, but the point here is to prepare the reader for the subsequent proofs $$\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$ $$\frac{1}{5} + \dots + \frac{1}{8} > \frac{1}{8} + \dots + \frac{1}{8} = \frac{1}{2}$$ and so on. So the original series clearly diverges to infinity. The main crux of the proof here is this assertion: $$\frac{1}{2^n+1} + \dots + \frac{1}{2^{n+1}} > \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}} = \frac{1}{2}$$ for each $n$.

Problem 2

Similar to the proof above, for each $n$ we have: $$a_{2^n+1} + \dots + a_{2^{n+1}} < 4^{n+1}$$ So by AM-HM we have: $$\frac{1}{a_{2^n+1}} + \dots + \frac{1}{a_{2^{n+1}}} > \frac{4^n}{a_{2^n+1} + \dots + a_{2^{n+1}}} > \frac{1}{4}$$ So the original series is greater than $1/4 + 1/4 + \dots = \infty$

Problem 3

Similar to the proof above, for each $n$ we have: $$a_{2^n+1} + \dots + a_{2^{n+1}} < 4^{n+1} \log (2^n) = n . 4^{n+1}.\log 2$$ So by AM-HM we have: $$\frac{1}{a_{2^n+1}} + \dots + \frac{1}{a_{2^{n+1}}} > \frac{4^n}{a_{2^n+1} + \dots + a_{2^{n+1}}} > \frac{1}{4 \log 2 n}$$ So the original series is greater than $\frac{1}{4 \log2} (1 + \frac{1}{2} + \frac{1}{3} + \dots)$ which is also divergent.

Wednesday, January 13, 2010

Infinite fractional sum

Find the limit to the infinite sum:

$$ 1 - \frac{1}{2} +\frac{1}{3} - \frac{1}{4} + \cdots$$