Pages

Bookmark and Share
Showing posts with label harmonic. Show all posts
Showing posts with label harmonic. Show all posts

Monday, December 19, 2011

Having fun with infinite series

1. Warm-up problem: show that
$$1 + \frac{1}{2} + \frac{1}{3} + \cdots = \infty$$

2. Suppose $a_1, a_2, \cdots$ is a sequence of positive numbers such that
$$a_1 + a_2 + \cdots + a_n \leq n^2$$
for all $n$, show that
$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots = \infty$$

3. Suppose $a_1, a_2, \cdots$ is a sequence of positive numbers such that
$$a_1 + a_2 + \cdots + a_n \leq n^2 \log n$$
for all $n$, show that
$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots = \infty$$

Solution

Problem 1

This is a standard textbook proof of the divergence of harmonic series, but the point here is to prepare the reader for the subsequent proofs $$\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$ $$\frac{1}{5} + \dots + \frac{1}{8} > \frac{1}{8} + \dots + \frac{1}{8} = \frac{1}{2}$$ and so on. So the original series clearly diverges to infinity. The main crux of the proof here is this assertion: $$\frac{1}{2^n+1} + \dots + \frac{1}{2^{n+1}} > \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}} = \frac{1}{2}$$ for each $n$.

Problem 2

Similar to the proof above, for each $n$ we have: $$a_{2^n+1} + \dots + a_{2^{n+1}} < 4^{n+1}$$ So by AM-HM we have: $$\frac{1}{a_{2^n+1}} + \dots + \frac{1}{a_{2^{n+1}}} > \frac{4^n}{a_{2^n+1} + \dots + a_{2^{n+1}}} > \frac{1}{4}$$ So the original series is greater than $1/4 + 1/4 + \dots = \infty$

Problem 3

Similar to the proof above, for each $n$ we have: $$a_{2^n+1} + \dots + a_{2^{n+1}} < 4^{n+1} \log (2^n) = n . 4^{n+1}.\log 2$$ So by AM-HM we have: $$\frac{1}{a_{2^n+1}} + \dots + \frac{1}{a_{2^{n+1}}} > \frac{4^n}{a_{2^n+1} + \dots + a_{2^{n+1}}} > \frac{1}{4 \log 2 n}$$ So the original series is greater than $\frac{1}{4 \log2} (1 + \frac{1}{2} + \frac{1}{3} + \dots)$ which is also divergent.

Thursday, November 19, 2009

3 Sequence Inequality

If $a_i, b_i, c_i$ are sequences of positive numbers for $i = 1,2,\cdots,n$, prove the following inequality:

$\sum (a_i+b_i+c_i) \sum \frac{a_ib_i + b_ic_i+ c_ia_i}{a_i+b_i+c_i} \sum \frac{a_ib_ic_i}{a_ib_i + b_ic_i+ c_ia_i} \leq \sum a_i \sum b_i \sum c_i$

where all summations are taken from $i=1$ to $i=n$. When does equality happen?

Wednesday, August 26, 2009

KBB2 Problem 10

Let $P$ be a permutation of the number $(1,2,\cdots,n)$. We apply a process as follows:

Start with the leftmost number and move to the right. Everytime we encounter a number that's bigger than the leftmost number, we swap that number and the leftmost number. Continue until we arrive at the rightmost number.

Define the rank of $P$ as the number of swaps that happened. For example, the permutation$(2,3,1,4)$ has rank 2 because:

$\displaystyle (2,3,1,4) \to (3,2,1,4) \to (4,2,1,3)$

Let$S_n$ be the sum of the ranks of all possible permutations of $(1,2,\cdots,n)$. Is there an $n$ for which$S_n > 2009n!$?