Suppose $a_1,a_2,a_3,a_4$ and $b_1,b_2,b_3,b_4$ are eight real numbers. Prove that there is $i,j$ distinct indices such that $a_ia_j + b_ib_j \geq 0$.
Advanced version:
Suppose $a_i,b_i,c_i, 1 \leq i \leq 5$ are fifteen real numbers. Prove that there is $i,j$ distinct indices such that $a_ia_j + b_ib_j + c_ic_j \geq 0$.
General version:
Suppose $A_{i,j}, 1 \leq i \leq n, 1 \leq j \leq n+2$ is a matrix of $n \times (n+2)$ real numbers, prove that there are two columns $p,q$ such that their dot product is non-negative. That is:
$$\sum_{i=1}^{n} A_{i,p} A_{i,q} \geq 0$$
Also find an example of a $n \times (n+1)$ matrix where this property does not hold
A geometric interpretation of this problem is that, given $n+2$ vectors in $n$-dimensional space, two of them must form an angle of 90 degrees or less.
Showing posts with label dot product. Show all posts
Showing posts with label dot product. Show all posts
Thursday, May 20, 2010
Subscribe to:
Posts (Atom)