Pages

Bookmark and Share
Showing posts with label normalization. Show all posts
Showing posts with label normalization. Show all posts

Wednesday, January 15, 2014

Infimum of abc

Find the largest number $M$ such that for any given distinct number $a,b,c$ such that $0 < a,b,c < 1$ we always have: $$\frac{(a+b)(b+c)(c+a)}{|(a-b)(b-c)(c-a)|} > M$$

Solution

Clearly $M=1$ satisfies the condition. Now we prove that we can get the LHS arbitrarily close to 1.

Let $a$ be an arbitrary number < 1, $b = a/(1+x)$ and $c=a/(1+x+yx)$ for some really large numbers $x,y$. The LHS now becomes: $$\frac{(2+x)(2+(y+1)x)(2+(y+2)x)}{y(y+1)x^3}$$ $$=(\frac{2}{x}+1)(\frac{2}{x(y+1)} + 1)(\frac{2}{xy} + \frac{2}{y} + 1)$$ We can set $x,y$ large enough that the expression is as close as needed to 1.

Wednesday, November 25, 2009

Polynomial Algorithm

Credit for this problem goes to Zeke Chin
Does there exist an algorithm for the decision problem:

Given a polynomial over $n$ variables $x_1,\cdots,x_n$ with positive integer coefficients, and a positive integer $c$, is it true that $cx_1\cdots x_n \leq P(x_1,\cdots,x_n)$ for all assignments of positive integers to $x_1,\cdots,x_n$?

For example, for $P = x_1^2 + x_2^2$ and $c=2$, the algorithm should return "Yes" since $2x_1x_2 \leq x_1^2 + x_2^2$

Sunday, August 16, 2009

KBB2 Problem 4

For $a,b,c$ positive reals, show that:

$\displaystyle \frac{6a}{9a^2+5(a+b+c)^2} + \frac{6b}{9b^2+5(a+b+c)^2} + \frac{6c}{9c^2+5(a+b+c)^2} \leq \frac{1}{a+b+c}$