Pages

Bookmark and Share
Showing posts with label integration by parts. Show all posts
Showing posts with label integration by parts. Show all posts

Wednesday, September 1, 2010

Integral Inequality

Prove that:

$$\left( \int_\pi^\infty\frac{\cos x}{x}\ dx\right)^{2} < \frac{1}{{\pi}^{2}} $$

Solution

Integrate by parts:

$$\int \frac{\cos x}{x} dx = \frac{\sin x}{x} + \int \frac{\sin x}{x^2} dx$$

So
$$\int_\pi^\infty\frac{\cos x}{x}\ dx = \int_\pi^\infty \frac{\sin x}{x^2} dx$$

And
$$| \int_\pi^\infty\frac{\cos x}{x}\ dx| = |\int_\pi^\infty \frac{\sin x}{x^2} dx|$$
$$\leq \int_\pi^\infty \frac{| \sin x |}{x^2} dx$$
$$\leq \int_\pi^\infty \frac{1}{x^2} dx $$
$$= \frac{1}{\pi}$$