Pages

Bookmark and Share
Showing posts with label iterative. Show all posts
Showing posts with label iterative. Show all posts

Monday, January 30, 2012

Successive reflection

Given 2012 points on the plane: $A_1, \dots, A_{2012}$, and a point $P$. Suppose $B_1, \dots, B_{2012}$ is a permutation of the $A_i$s, we determine the shadow of $P$ as follows:

Reflect $P$ with respect to $B_1$ to obtain $P_1$. Reflect $P_1$ with respect to $B_2$ to obtain $P_2$, and so on, to arrive with $P_{2012}$. We call this last point the shadow of $P$.

Obviously, depending on the permutation of $B_i$s, one may arrive at different shadows of $P$. Find the maximal numbers of shadows of $P$ over all possible permutations.

Wednesday, March 23, 2011

Sequence of natural numbers

Suppose $a_1,a_2,\dots, a_n,\dots$ is a sequence of natural numbers that satisfy:

$$a_{a_n} = 6n - a_n$$

for all $n$. Find $a_{2011}$.

Solution

For a fixed $n$, let $x_0 = n$
$$x_1 = a_n$$
$$x_2 = a_{x_1}$$
$$x_3 = a_{x_2}$$
$$\cdots$$
$$x_n = a_{x_{n-1}}$$

Then:
$$x_2 = a_{x_1} = a_{a_n} = 6n - a_n = 6x_0 - x_1$$
$$x_3 = a_{x_2} = a_{a_{x_1}} = 6x_1 - a_{x_1} = 6x_1 - x_2$$
In general:
$$x_{n+2} = a_{x_{n+1}} = a_{a_{x_n}} = 6x_n - a_{x_n} = 6x_n - x_{n+1}$$
$$x_{n+2} + x_{n+1} - 6x_n = 0$$

This is a second order recursion with characteristic equation $t^2 + t - 6 = 0$ with solutions $t = -3, t = 2$.

So the general term for $x_n$ is:
$$x_n = P.2^n + Q.(-3)^n$$.
However, for $x_n$ to be positive for all $n$, then $Q$ must be zero, otherwise with large enough $n$, $x_n$ could eventually be negative. Thus $x_n = P.2^n$ for some $P$.

$a_n = x_1 = 2P = 2.P = 2x_0 = 2n$

After substituting back, we find that $a_n = 2n$ satisfies all the constraints, so we have $a_n = 2n$ for all $n$.