Given a triangle $ABC$, and point $P$ in its interior. Find points $X,Y$ on $AB$ and $AC$ (or their extensions) such that $XY$ passes through $P$ and
$$\frac{1}{PX} + \frac{1}{PY}$$ is maximized.
Monday, June 28, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment