Processing math: 100%

Pages

Bookmark and Share

Friday, April 8, 2011

Functional Equation

Find all functions f:N \to N such that:

f(f(m+n)) = f(m) + f(n) \forall m,n \in N

1 comment:

  1. Substitute m=n=a+1: f(f(2a+2))=2f(a+1).

    Substitute m=a+2,n=a: f(f(2a+2))=f(a+2)+f(a)

    So f(a)+f(a+2)=2f(a+1), or f(a+2)-f(a+1)=f(a+1)-f(a). It follows that f is linear. The rest should be easy. :D

    ReplyDelete