Tuesday, October 10, 2017
symmetric 2 variable function
Suppose $S = \{1,2,\dots,n\}$ and $f: S \times S \to R$ satisfies the following:
$$f(i,j) + f(j,i) = 0 \forall i,j \in S$$
Now for any two number $i,j$, we say that $i$ is superior to $j$ if there exists a $k$ (not necessarily distinct from $i,j$) such that $f(i,k) + f(k,j) \geq 0$.
Show that there exists a number $x \in S$ such that $x$ is superior to all elements of $S$.
Labels:
Algebra,
Combinatorics,
function,
graph,
graph theory,
induction,
maximal principle,
strong induction
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment