Saturday, July 14, 2018
Maximum point above triangle
In triangle $ABC$, $AD$ is an internal bisector. Choose point $X$ on $DA$'s extension, and let $Y,Z$ be on $XB$ and $XC$ so that $AY \perp XB$ and $AZ \perp XC$. Define $f(X)$ as:
$$f(X) = \frac{AY}{XB} + \frac{AZ}{XC}$$
Find the point $X*$ along $DA$'s extension such that $f(X*)$ is maximum.
Solution
Let $\theta = \angle XAB = \angle XAC$. Easy to see that $\pi/2 < \theta < \pi$. Let $x = AX$.
Area of $\triangle ABX$ =
$$\frac{1}{2}cx \sin \theta = \frac{1}{2} XB.AY$$
So:
$$\frac{AY}{XB} = \frac{cx \sin \theta}{XB^2} = \frac{cx\sin \theta}{c^2+x^2-2cx \cos \theta}$$
And likewise:
$$\frac{AZ}{XC} = \frac{bx\sin \theta}{b^2+x^2-2bx \cos \theta}$$
Now suppose WLOG $c > b$ and $c = tb$ (with $t > 1$). Then we need to maximize:
$$\frac{cx}{c^2+x^2-2cx \cos \theta} + \frac{bx}{b^2+x^2-2bx \cos \theta}$$
$$ \frac{\frac{x}{bt}}{(\frac{x}{bt})^2 + 1 - 2 t\frac{x}{bt}\cos \theta }+\frac{\frac{x}{b}}{(\frac{x}{b})^2 + 1 - 2 \frac{x}{b}\cos \theta }$$
So if we let $y = x/b$, and $r = -2 \cos \theta$ (which means $0 < r < 2$), and $g(s) = s/(s^2+rs+1)$ then the problem is akin to finding the minimum of the following function for $y > 0$:
$$h(y) = g(y) + g(\frac{y}{t})$$
Subscribe to:
Posts (Atom)