Solution
Let $\theta = \angle XAB = \angle XAC$. Easy to see that $\pi/2 < \theta < \pi$. Let $x = AX$.
Area of $\triangle ABX$ = $$\frac{1}{2}cx \sin \theta = \frac{1}{2} XB.AY$$ So: $$\frac{AY}{XB} = \frac{cx \sin \theta}{XB^2} = \frac{cx\sin \theta}{c^2+x^2-2cx \cos \theta}$$ And likewise: $$\frac{AZ}{XC} = \frac{bx\sin \theta}{b^2+x^2-2bx \cos \theta}$$ Now suppose WLOG $c > b$ and $c = tb$ (with $t > 1$). Then we need to maximize: $$\frac{cx}{c^2+x^2-2cx \cos \theta} + \frac{bx}{b^2+x^2-2bx \cos \theta}$$ $$ \frac{\frac{x}{bt}}{(\frac{x}{bt})^2 + 1 - 2 t\frac{x}{bt}\cos \theta }+\frac{\frac{x}{b}}{(\frac{x}{b})^2 + 1 - 2 \frac{x}{b}\cos \theta }$$ So if we let $y = x/b$, and $r = -2 \cos \theta$ (which means $0 < r < 2$), and $g(s) = s/(s^2+rs+1)$ then the problem is akin to finding the minimum of the following function for $y > 0$: $$h(y) = g(y) + g(\frac{y}{t})$$