Solution
Let \theta = \angle XAB = \angle XAC. Easy to see that \pi/2 < \theta < \pi. Let x = AX.
Area of \triangle ABX = \frac{1}{2}cx \sin \theta = \frac{1}{2} XB.AY So: \frac{AY}{XB} = \frac{cx \sin \theta}{XB^2} = \frac{cx\sin \theta}{c^2+x^2-2cx \cos \theta} And likewise: \frac{AZ}{XC} = \frac{bx\sin \theta}{b^2+x^2-2bx \cos \theta} Now suppose WLOG c > b and c = tb (with t > 1). Then we need to maximize: \frac{cx}{c^2+x^2-2cx \cos \theta} + \frac{bx}{b^2+x^2-2bx \cos \theta} \frac{\frac{x}{bt}}{(\frac{x}{bt})^2 + 1 - 2 t\frac{x}{bt}\cos \theta }+\frac{\frac{x}{b}}{(\frac{x}{b})^2 + 1 - 2 \frac{x}{b}\cos \theta } So if we let y = x/b, and r = -2 \cos \theta (which means 0 < r < 2), and g(s) = s/(s^2+rs+1) then the problem is akin to finding the minimum of the following function for y > 0: h(y) = g(y) + g(\frac{y}{t})
No comments:
Post a Comment