Prove that:
$$\left( \int_\pi^\infty\frac{\cos x}{x}\ dx\right)^{2} < \frac{1}{{\pi}^{2}} $$
Solution
Integrate by parts:
$$\int \frac{\cos x}{x} dx = \frac{\sin x}{x} + \int \frac{\sin x}{x^2} dx$$
So
$$\int_\pi^\infty\frac{\cos x}{x}\ dx = \int_\pi^\infty \frac{\sin x}{x^2} dx$$
And
$$| \int_\pi^\infty\frac{\cos x}{x}\ dx| = |\int_\pi^\infty \frac{\sin x}{x^2} dx|$$
$$\leq \int_\pi^\infty \frac{| \sin x |}{x^2} dx$$
$$\leq \int_\pi^\infty \frac{1}{x^2} dx $$
$$= \frac{1}{\pi}$$
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment