Processing math: 6%

Pages

Bookmark and Share

Sunday, August 16, 2009

KBB2 Problem 4

For a,b,c positive reals, show that:

\displaystyle \frac{6a}{9a^2+5(a+b+c)^2} + \frac{6b}{9b^2+5(a+b+c)^2} + \frac{6c}{9c^2+5(a+b+c)^2} \leq \frac{1}{a+b+c}

Solution


Let x = \frac{3a}{a+b+c},y = \frac{3b}{a+b+c}, z = \frac{3c}{a+b+c}. Then x+y+z = 3 and our inequality is equivalent to

\frac{6x}{9x^2+5(x+y+z)^2} + \frac{6y}{9y^2+5(x+y+z)^2} + \frac{6z}{9z^2+5(x+y+z)^2} \leq \frac{1}{x+y+z}

\displaystyle \frac{2x}{x^2+5} + \frac{2y}{y^2+5} + \frac{2z}{z^2+5} \leq 1

Now,

\displaystyle \frac{2x}{x^2+5} \leq \frac{2x+1}{9}

\displaystyle \iff (2x+1)(x^2+5) \geq 18x

The last inequality is equivalent to (x-1)^2(2x+5) \geq 0 which is obviously true, or it can also be proved by AM-GM:

\displaystyle 2x+1 \geq 3\sqrt[3]{x^2}

\displaystyle x^2+5 \geq 6\sqrt[6]{x^2}

multiplying them gives (2x+1)(x^2+5) \geq 18x

Now,

\displaystyle \frac{2x}{x^2+5} \leq \frac{2x+1}{9}

\displaystyle \frac{2y}{y^2+5} \leq \frac{2y+1}{9}

\displaystyle \frac{2z}{z^2+5} \leq \frac{2z+1}{9}

So when we add them, we have our desired inequality.

No comments:

Post a Comment