Processing math: 100%

Pages

Bookmark and Share

Sunday, November 8, 2009

Integral

Evaluate \int e^x \sec x \tan^2x dx

Solution


Let A = \int e^x \sec^3x dx and B = \int e^x \sec x dx, and since \tan^2x = \sec^2x-1, the desired integral is A-B.

A = \int e^x \sec^3x dx

Here we evaluate it using integration by parts, with

u = e^x \sec x, du = e^x \sec x (\tan x + 1) dx

dv = \sec^2x dx, v = \tan x

So

A = uv - \int v du = e^x \sec x \tan x - \int e^x \sec x \tan^2 xdx - \int e^x \sec x \tan x dx

= e^x \sec x \tan x - (A-B) - \int e^x \sec x \tan x dx

Save this equation. Now we evaluate \int e^x \sec x \tan x dx using integration by parts again,

u = e^x, du = e^x dx

dv = \sec x \tan x dx, v =\sec x

So \int e^x \sec x \tan x dx = e^x \sec x - \int e^x \sec x dx = e^x \sec x - B

Plug this back into the saved equation:

A = e^x \sec x \tan x - (A-B) - \int e^x \sec x \tan x dx

= e^x \sec x \tan x - (A-B) - (e^x \sec x - B)

So 2A-2B = e^x \sec x \tan x - e^x \sec x

Thus A-B = (e^x \sec x \tan x - e^x \sec x) / 2

No comments:

Post a Comment