Solution
Let A = \int e^x \sec^3x dx and B = \int e^x \sec x dx, and since \tan^2x = \sec^2x-1, the desired integral is A-B.
A = \int e^x \sec^3x dx
Here we evaluate it using integration by parts, with
u = e^x \sec x, du = e^x \sec x (\tan x + 1) dx
dv = \sec^2x dx, v = \tan x
So
A = uv - \int v du = e^x \sec x \tan x - \int e^x \sec x \tan^2 xdx - \int e^x \sec x \tan x dx
= e^x \sec x \tan x - (A-B) - \int e^x \sec x \tan x dx
Save this equation. Now we evaluate \int e^x \sec x \tan x dx using integration by parts again,
u = e^x, du = e^x dx
dv = \sec x \tan x dx, v =\sec x
So \int e^x \sec x \tan x dx = e^x \sec x - \int e^x \sec x dx = e^x \sec x - B
Plug this back into the saved equation:
A = e^x \sec x \tan x - (A-B) - \int e^x \sec x \tan x dx
= e^x \sec x \tan x - (A-B) - (e^x \sec x - B)
So 2A-2B = e^x \sec x \tan x - e^x \sec x
Thus A-B = (e^x \sec x \tan x - e^x \sec x) / 2
No comments:
Post a Comment