For a,b,c > 0, prove that:
! (ab(a+b) + bc(b+c) + ca(c+a))^2 \geq 4abc(a+b+c)(a^2+b^2+c^2)
First Solution
WLOG, we assume a \geq b \geq c.
From AM-GM: RHS \leq (ac(a+b+c) + b(a^2+b^2+c^2))^2
But ac(a+b+c) + b(a^2+b^2+c^2) \leq ab(a+b) + bc(b+c) + ca(c+a) \iff b(b-a)(b-c) \geq 0
Second Solution
We will use the usual notation S(k,l,m) to denote the symmetric sum: S(k,l,m) = \sum a^kb^lc^m where the sum is over all permutations of a,b,c.
ab(a+b)+bc(b+c)+ca(c+a) = \sum a^2b = S(2,1,0).
4(a+b+c)(a^2+b^2+c^2) = S(1,0,0).S(2,0,0) = 2S(3,0,0) + 4S(2,1,0)
So RHS = abc(2S(3,0,0) + 4S(2,1,0)) = 2S(4,1,1) + 4S(3,2,1)
And LHS = S(2,1,0).S(2,1,0) = S(4,2,0) + S(3,3,0) + S(4,1,1)+ 2S(3,2,1) + S(2,2,2)
So we need to prove:
! S(4,2,0) + S(3,3,0) + S(2,2,2) \geq S(4,1,1) + 2S(3,2,1)
By Muirhead, S(4,2,0) \geq S(4,1,1), so we only need to prove
! S(3,3,0) + S(2,2,2) \geq 2S(3,2,1)
! \iff S(3,3,3) (S(0,0,-3) + S(-1,-1,-1)) \geq 2S(3,3,3) S(0,-1,-2)
! \iff S(0,0,-3) + S(-1,-1,-1) \geq 2S(0,-1,-2)
which is true by Schur
[...] http://dharmath.thehendrata.com/2009/11/30/solution-3-variable-inequality/ (1) Comment Read [...]
ReplyDelete