Twist
Suppose F:\mathbb{R}^4 \to \mathbb{R}^4 is a differentiable vector field in \mathbb{R}^4, we define the operation "twist" that maps each point in \mathbb{R}^4 to S as follows:
If F(x,y,z,w) = A\vec i + B \vec j + C \vec k + D \vec l then
(\bold{twist} F)(x,y,z,w) = \left( \begin{array}{cccc} 0 & B_x - A_y & C_x - A_z & D_x - A_w \\ A_y-B_x & 0 & C_y - B_z & D_y - B_w \\ A_z-C_x & B_z - C_y & 0 & D_z - C_w \\ A_w - D_x & B_w - D_y & C_w - D_z & 0 \end{array} \right)
Where B_x denotes \partial B / \partial x and so on. One way that makes it easier to memorize the formula is to associate the first column and row with x, second column and row with y, third with z, and last with w.
Spin
If G : \mathbb{R}^4 \to S is a differentiable function that takes a point in \mathbb{R}^4 to a skew-symmetric matrix, we define the operation "spin" that produces a vector field in \mathbb{R}^4 as follows:
If G(x,y,z,w) = \{ \sum_{i,j} G_{ij}(x,y,z,w) \} (where G_{ij} is the entry at the i-th row and j-th column, and since G is skew-symmetric, then G_{i,i} = 0 and G_{ji} = -G_{ij})
Then
(\bold{spin} G)(x,y,z,w) = (G_{23_w} + G_{34_y} + G_{42_z}) \vec i
+(G_{13_w} + G_{34_x} + G_{41_z}) \vec j
+(G_{12_w} + G_{24_x} + G_{41_y}) \vec k
+(G_{12_z} + G_{23_x} + G_{31_y}) \vec l
where again G_{ij_x} denotes \partial G_{ij} / \partial x and so on.
Problems:
Prove the following:
1. (\bold{spin}(\bold{twist} F)) = \vec 0
2. \bigtriangledown \cdot ( \bold{spin} G) = 0
3. If F is a conservative vector field, then \bold{twist} F = \vec 0
No comments:
Post a Comment