Pages

Bookmark and Share

Monday, May 10, 2010

3 arbitrary functions

Suppose $f,g,h$ are functions that are defined in the closed interval $0 \leq x \leq 1$. Show that we can always find $a,b,c \in [0,1]$ such that:

$$|f(a)+g(b)+h(c) - (1-a)(1-b)(1-c)| \geq \frac{1}{3}$$

Also show that the constant $\frac{1}{3}$ cannot be replaced by a larger constant.

No comments:

Post a Comment