Given a triangle ABC and a point M inside the triangle.
Let \alpha = \angle BMC, \beta = \angle AMC, \gamma = \angle AMB
Prove that:
\frac{AM}{BM.CM} + \frac{BM}{CM.AM} + \frac{CM}{AM.BM} \geq -2 \left( \frac{\cos \alpha}{AM} + \frac{\cos \beta}{BM} + \frac{\cos \gamma}{CM} \right)
Solution In Progress
Let
a = \frac{AM}{\sin \alpha}, b = \frac{BM}{\sin \beta}, c = \frac{CM}{\sin \gamma}
Because M is in the interior of the triangle, then 0 < \alpha, \beta, \gamma < \pi and thus 0 < \sin \alpha, \sin \beta, \sin \gamma \leq 1. Thus a,b,c > 0. Without loss of generality, we may assume that a \geq b \geq c.
So we have:
AM = a \sin \alpha, BM = b \sin \beta, CM = c \sin \gamma
Substitute it to our inequality, and use the following shorthand:
C_\alpha = \cos \alpha \sin \beta \sin \gamma
C_\beta = \sin \alpha \cos \beta \sin \gamma
C_\gamma = \sin \alpha \sin \beta \cos \gamma
So our inequality becomes
\iff a^2\sin^2 \alpha + b^2 \sin^2 \beta + c^2 \sin^2 \gamma +2 ( bc C_\alpha + ac C_\beta + ab C_\gamma ) \geq 0
Note the following identities:
C_\beta + C_\gamma = \sin \alpha \cos \beta \sin \gamma + \sin \alpha \sin \beta \cos \gamma = \sin \alpha \sin (\beta + \gamma) = \sin \alpha \sin (2 \pi - (\beta + \gamma)) = - \sin^2 \alpha
Similarly,
C_\alpha + C_\gamma = - \sin^2 \beta
C_\alpha + C_\beta = - \sin^2 \gamma
So that
C_\alpha = (\sin^2 \alpha - \sin^2 \beta - \sin^2 \gamma)/2
C_\beta = (\sin^2 \beta - \sin^2 \alpha - \sin^2 \gamma)/2
C_\gamma = (\sin^2 \gamma - \sin^2 \beta - \sin^2 \alpha)/2
Substituting back to our inequalities, we have:
\iff (a-b)(a-c)\sin^2 \alpha + (b-a)(b-c) \sin^2 \beta + (c-a)(c-b) \sin^2 \gamma \geq 0
It's also equivalent to:
\iff (a-b)^2 C_\gamma + (a-c)^2 C_\beta + (b-c)^2 C_\alpha \leq 0
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment