An $n \times n$ checker board is painted all white except $m$ cells that are painted black. At each step, one is allowed to choose a rectangle that has three black corners, and paint the fourth corner black. A configuration is called completable if one can paint the entire board black using a sequence of steps described above.
First Question:
Find the smallest $m$ such that any configuration with $m$ black cells are always completable.
Second Question:
Find the smallest $m$ such that there is a completable configuration with $m$ black cells.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment